
ARMY RESEARCH LABORATORY

High-Obliquity Impact of a Compact
Penetrator on a Thin Plate:

Penetrator Splitting and Adiabatic Shear

by J. W. Walter
and P. W. Kingman

ARL-TR-1584 January 1998

DGic QUALMitr is ul D 3

Approved for public release; distribution is unlimited.



The findings in this report are not to be construed as an official
Department of the Army position unless so designated by other
authorized documents.

Citation of manufacturer's or trade names does not constitute an
official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return
it to the originator.



Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-TR-1584 January 1998

High-Obliquity Impact of a Compact
Penetrator on a Thin Plate: Penetrator
Splitting and Adiabatic Shear

J. W. Walter, P. W. Kingman
Weapons and Materials Research Directorate, ARL

DIXC QUti17 Ij, -,GTD 3

Approved for public release; distribution is unlimited.



Abstract

Computational simulations were performed of the impact of a compact, nonideal penetrator
on a thin plate at high obliquities. These computations simulated two series of experiments at
velocities of 1.5 km/s and 4.1 km/s, respectively, with obliquities of 55-70'.

The experimental results indicated penetrator splitting at obliquities between 55 and 650.
Preliminary three-dimensional simulations with the CTH code, using either maximum tensile
stress failure or the Johnson-Cook model, captured some aspects of fragment splitting but in a
less than satisfactory manner. Simulations utilizing the Silling shear band model were also
performed, with somewhat more realistic results.

In addition to graphical descriptions of the target hole geometry and debris cloud, numerical
histories of the target hole area and up-range/down-range partitioning of mass, momentum, and
energy were extracted for comparison with the experiments.
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1. Introduction

A generic problem arising in penetration mechanics is the impact of a compact, nonideal

penetrator on a thin plate or shell at high obliquity. We are concerned generally with impacts for

which 0 Ž 550, 1.5 km/s • V 5 5 km/s, t/d < 1, /d < 3, where 0 is the obliquity, V the impact speed,

t the plate thickness, and 1 and d the penetrator length and diameter. Ballistic impact under these

conditions has been studied relatively little as compared with the large volume of extant work

concerned with rigid penetrators and/or low obliquities. Consequently, analytic penetration/debris

models and algorithms that are acceptably accurate for encounter conditions of the latter sort may

not be so for those considered here. High-obliquity impact on thin targets may produce very

asymmetric debris clouds, whereas current penetration algorithms often assume the debris cloud is

axisymmetric. Moreover, in thin-target impacts, the relative strength of shear loading as compared

with pressure loading increases dramatically at high obliquity so that the operative material failure

mechanisms may be quite different from those that apply at the same impact speed but low obliquity.

The work reported herein represents our preliminary effort to include in numerical simulations

some of the critical material failure mechanisms which we believe underlie the complex penetration

phenomena observed experimentally for encounter conditions described in the previous paragraph.

Therefore, we restrict attention to a single prismatic penetrator and single-element target

configuration. Geometric variation is primarily with respect to obliquity; we also present results

arising from combined effects of penetrator obliquity, 0, and rotation about the shot line, 4). Because

this study is exploratory, we restrict attention to impact speeds near the extrema of the test matrix.

2. Experimental Motivation

Our simulations were motivated by two series of experiments. The first series was performed

at the University of Alabama-Huntsville (UAH) Light Gas Gun for the U.S. Army Missile Command

(MICOM); we received a summary of the experiments from Mr. Mike Cole of MICOM. In all shots,

the penetrator was a 1.4 x 2 x 2 cm rectangular prism of 4130 steel (density 7.9 g/cm3 , mass 44.2 g)
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hardened to Rockwell C43. The target was a 0.476 x 150 x 300 cm plate of 304 stainless steel. In

the experiments, the penetrator orientation (pitch, yaw and 0) varied widely. Rather than attempting

to match the geometry of each shot exactly, we performed simulations at each combination of (V, 0)

represented in the experiments; at the extreme values of (V, 0) we also varied 0. Figure 1 illustrates

the initial geometry used in the simulations. The penetrator faces are parallel and perpendicular to

the shot line, and it travels to the right and down. Note that in all the simulations y = 0 is exploited

as a symmetry plane. Table 1 summarizes the matrix of simulations for the UAH shots.

A similar series of experiments were conducted (Bjerke, Luther, and Scheffler 1994) at the U.S.

Army Research Laboratory (ARL) (also for MICOM) in which the same penetrator impacted a

laminate target at V = 2.2 km/s and 55' ! 0 • 700; yaw and pitch at impact were negligible. The

ARL target consisted of a thin, (t = 1.5 cm), mild steel layer in front, a middle layer of very low-

density material, and finally the same stainless plate used in the UAH experiments. For obliquities

between 550 and 650, the penetrator split so that a substantial fragment penetrated the target (and

was captured in a witness pack), while other large fragments ricocheted down the front surface of

the target. Similar behavior has also been observed for mild steel cube and sphere penetrators

against single mild steel and stainless steel plates (Finnegan et al. 1993; Finnegan and Schulz 1992).

It appears that this splitting mode of penetration is not due primarily to the laminate nature of the

ARL target but is dependent upon material strength-related failure mechanisms. In particular, the

larger penetrator fragments retained sharp edges and appeared to have suffered little gross plastic

deformation. Thus, we chose to examine this phenomenon with simulations at low velocity

(V = 1.5 km/s, 4' =0) and the same obliquities as in the UAH series. However, we employed several

different material models for the penetrator, as noted in Table 2.

3. Simulation Methodology

All simulations were performed with the Eulerian wavecode, CTH (McGlaun and Thompson

1990). The SESAME Mie-Grfineisen EOS model and parameter values for 304 stainless steel were

used for the target plate. The deviatoric response was modeled with an elastic-perfectly plastic

2



0

cm

t- h

3I



Table 1. Summary of Three-Dimensional (3D) Simulations Performed for UAH Shots

ID q w e e lm k blr lc d alv
V(km/s) 4.16 4.16 4.19 4.10 4.16 4.16 3.19 3.19 3.12 3.07 3.11 3.11

0 (deg.) 55 55 60 65 70 70 55 55 60 65 70 70

4(deg.) 0 45 0 0 0 45 0 45 0 0 0 45

Table 2. Summary of 3D Simulations Performed for ARL Shots

ID d Penetrator Material Model
(deg.)

x 60 Johnson-Cook flow and failure, , 0.6.

z 60 Johnson-Cook flow and failure, •P' = 0.15.

0 60 Elastic-perfectly plastic, fracture stress = 1.5 YO.

1 60 Elastic-perfectly plastic, fracture stress = 0.375 Y0 .

3 55 Elastic-perfectly plastic, fracture stress = 1.5 Y 0.

4 65 Elastic-perfectly plastic, fracture stress = 1.5 Y0.

5 70 Elastic-perfectly plastic, fracture stress = 1.5 YO.

(EPP), von Mises yield surface with low-density and high-temperature strength reduction (EPP); the

initial yield strength Y02 = 0.34 GPa was obtained from the Steinberg-Guinan-Lund viscoplasticity

model database distributed with CTH. In all UAH simulations, the penetrator was also treated with

the Mie-Grilneisen EOS (using parameter values for Vascomax-250 steel) and the EPP strength

model. The initial yield strength Y01 = 1.16 GPa was obtained by converting the measured R•

hardness to Brinell (BHN 400) and using a handbook value for oil-quenched and tempered 4130

steel (Brades 1978).

An important factor in the use of CTH is the numerical fracture algorithm. Since strength effects

were believed significant in the experiments, we used the maximum principal stress criterion,
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Id d
f ma d Of ) in which af is the smallest (user input) tensile fracture stress i the cell, 0 max

pf =mx (0, Umax -r in ,cll a

the maximum principal deviatoric stress, and pf is the cell fracture pressure. If the cell pressure falls

below pf, void is introduced to raise the pressure. Use of an experimentally determined spall strength

for the fracture stress may not produce good results in all problems; no fracture stress values are

supplied in the CTH material libraries. As a baseline value we used o(f = 1.5 Y0 for both materials.

The yield strength for mixed cells is given by a volume average over the materials with strength

(void volume is not counted). The penetrator-target interface is treated as a contact (continuous

velocity). All 3D simulations used a uniform space mesh of 0.075-cm cubes; the mesh and target

are longer in the x-direction than indicated in Figure 1.

The Johnson-Cook flow law and failure models (Johnson and Cook 1985) were used for some

of the 3D ARL simulations and with the explicit shear band calculations. The flow stress is given

by

o [A + B(EP))n] [1 + Cln(max(1,t))] [1 - T'm], (1)

where EP is the equivalent plastic strain, t the strain rate and T * the homologous temperature. The

equivalent plastic strain at failure is given by

EPf (p, o, T *,,t) = [D1 + D2 (-D 3P/O)] [1 + D41n(max(1,i))] [I + D5 T*], (2)

where p is the pressure and D1, ..., D5 are constants. Damage accumulates according to

D = f-(Pf)-' dEP; failure occurs when D = 1, at which point (in CTH) the stress deviator and

fracture stress, pf, are set to zero. Material constants were obtained by taking published values for

4340 steel and adjusting A, B, D1, D2 so that the yield strength, ultimate strength and EPf in a quasi-

static tension test matched handbook values (Brades 1978) for the penetrator.
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4. Results of Simulations

The UAH results are typified by Figure 2. The flow is pressure-dominated and results in

considerable fragmentation, although large sections of the debris bubble are still intact. The rotation,

(f, has a mild effect on the bubble at 0 = 550 but a much stronger effect at 700. In both cases the

edge strike produces a considerably stronger initial shock, which contributes to debris bubble

asymmetry. Although little penetrator mass has traveled downrange at 70', the plate is perforated

nonetheless; in all cases, the target hole is still growing at 26 ps. At 650 and 700, a large section of

plate has been accelerated and deformed by the penetrator, but it is unclear whether these areas will

ultimately fragment, tear off as intact petals, or remain attached. Shearing-induced flow instabilities

appear to influence the fragmentation significantly, but mesh size dependence of this aspect of the

simulations has not yet been explored. Note that although initial shock pressures at 0 = 550

approach 50 GPa (not shown) the impact geometry results in poor focusing of release waves, so there

is essentially no shatter of the penetrator. Apparently for the same reason, the well-known a-E

phase transition at 13 GPa has no significant effect. By using the CTHED post-processor to sum

material masses over subregions of the computational domain, the uprange/downrange partitioning

of penetrator mass and target hole growth can be calculated as in Figures 3 and 4.

Figure 5 shows the effect of varying the material failure model at 1.5 km/s. The penetrator

fragments in all cases, but only after suffering very extensive plastic deformation, contrary to the

experimental results of Bjerke, Luther, and Scheffler (1994). Tensile stresses occur because the

penetrator material is flowing laterally against the target. The Johnson-Cook model does not

encourage fragmentation, because plastic strain must be accompanied by significant tension in order

that damage may accumulate rapidly. During early shock release wave interaction, there is little

plastic strain and at later times (as in this figure) the tensile stresses are weak.

To obtain better fragmentation behavior, we have also employed in two dimensions a model

intended to capture effects of adiabatic shear band formation (Silling 1992). In our version, shear

bands are assumed to nucleate (at preassigned locations identified by Lagrangian tracer particles)
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when the equivalent plastic strain, eP, reaches an assigned value, E•. Each nucleator spawns four

shear band tips that propagate at speed vg in the directions of maximum shear stress if eP exceeds

another value ep. < Et in the CTH cell containing the band tip. When the tip moves to a new cell,

a tracer is inserted and the stress deviator set to zero. On the time scale of our simulations, shear

bands are hot and thus weak in tension as well as shear. To account for this, we use (2) with D, = 1

and D2 =... =D 5 = 0, so that when eP > 1, pf = 0. The results in Figure 6 were obtained with

vg = 2 km/s, eiw = 0.3, e,,p = 0.05. In spite of the crude shear band kinetics currently employed, the

model does capture a crucial feature of the ARL experiments: the penetrator fractures without the

individual fragments having first suffered large plastic deformation. This is particularly evident at

the higher obliquities. Among several improvements we intend to make to the physics in this model

are:

a. Directly modify the fracture pressure in shear-banded cells [rather than use equation (2)] to

prevent nonphysical softening in unbanded cells.

b. Allow partial rather than total loss of shear strength in banded cells using results from one-

dimensional (1D) analyses of adiabatic shear bands (Walter 1992; Wright 1995).

c. Allow random band nucleation with spacing determined from 1D analyses (Wright 1995).

5. Discussion

This work is part of an ongoing effort within the Weapons and Materials Research Directorate

to provide improved analytical modeling of high-obliquity impacts. In achieving this end, direct

simulation with wavecodes is a critical adjunct to experimentation, provided the simulations include

appropriate models for operative material flow and failure mechanisms. In order to maximize the

utility of these simulations, one further capability that is required is a statistical description of the

debris evolution. This sort of information has traditionally not been available from wavecodes and

the current version of CTH is no exception. At present, the CTHED post-processor can sum mass

12
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over rectangular subregions of the mesh, but more detailed information is not available. More

fundamentally, the fragment size produced by the numerical fracture algorithm is generally

dependent on the size of the computational cells, although the overall distributions of mass, energy,

etc., are less strongly affected by the mesh.

In conclusion, we have presented results that indicate a significant effect of penetrator shape on

the debris cloud at high velocity and obliquity. At lower velocity, we have shown that a crude

adiabatic shear band model can account for experimentally observed penetrator splitting and that

simpler failure models do not.
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